This site uses cookies! Learn More

This site uses cookies!

For providing our services, we do use cookies.
But get used, this is what most of modern web do!
However we have to warn you since we are obligated to so due to EU laws.

By continuing to use this site, you agree to allow us to store cookies on your computer. :)
And no, we will not eat your computer nor you will be able to eat those cookies :P

Sign in to follow this  
Followers 0

Pseudogap and Precursor Superconductivity Study of Zn doped YBCO

1 post in this topic

576efac3397ed42335e01be7490c2880.jpg [b] Ece Uykur, "Pseudogap and Precursor Superconductivity Study of Zn doped YBCO" [/b] 2015 | ISBN-10: 4431555099 | 93 pages | PDF | 9 MB In this thesis, the pseudogap and the precursor superconducting state, which are of great importance in clarifying the superconductivity mechanism in high-temperature cuprate superconductors, are investigated with a c-axis optical study in YBa2(Cu1-xZnx)3Oy. Testing was performed over a wide energy range with smaller temperature intervals for several Zn-substituted samples, as well as for several carrier-doping levels. A spectral weight (SW) analysis, in which the pseudogap behavior can be separated from the superconducting condensate with the SW transfer to the high-energy region, revealed that the pseudogap is not the precursor of the superconductivity (carriers moving to the high-energy region with pseudogap opening never contribute to the superconducting condensation). Moreover, the high-energy transfer continues even below Tc for the Zn-substituted samples (in which we weaken the superconductivity), which gives evidence to the coexistence of the pseudogap and the superconducting gap below Tc. On the other hand, the analysis of optical conductivity revealed that a precursor state to superconductivity can be defined at temperatures much higher than Tc. The superconducting carrier density (ns) was calculated for each temperature (above and below Tc) and the results confirmed the existence of ns at temperatures above Tc. The observed real superconducting condensate (ns) above Tc puts a serious constraint on the theory for high- Tc superconductivity. A theory based on an inhomogeneous superconducting state, in which a microscopically phase-separated state in a doped Mott insulator can be observed, is the most plausible candidate. This theory can explain the existence of ns and the observed temperature range for the precursor superconducting state. The results obtained show that the pseudogap coexists with superconductivity below Tc and is not the precursor of superconductivity. On the other hand, it is also possible to define a precursor superconducting state that is different than the pseudogap. The temperature range and the observed superconducting condensate in this state can be explained with the help of the inhomogeneous superconducting state.7409461d53baf8ee6fe405f510a7faff.png [b]Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me[/b]
Download ( NitroFlare )

Download ( Uploaded

Download ( Rapidgator )

Download ( Uploadable )

Download (Turbobit)

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0